X-ray flares, plateaus, and chromatic breaks of GRB afterglows from up-scattered forward-shock emission
نویسنده
چکیده
Scattering of the forward-shock synchrotron emission by a relativistic outflow located behind the leading blast-wave may produce an X-ray emission brighter than that coming directly from the forward-shock and may explain four features displayed by Swift X-ray afterglows: flares, plateaus (slow decays), chromatic light-curve breaks, and fast post-plateau decays. For a cold scattering outflow, the reflected flux overshines the primary one if the scattering outflow is nearly baryon-free and highly relativistic. These two requirements can be relaxed if the scattering outflow is energized by weak internal shocks, so that the incident forward-shock photons are also inverse-Compton scattered, in addition to bulk-scattering. Sweeping-up of the photons left behind by the forward shock naturally yields short X-ray flares. Owing to the boost in photon energy produced by bulk-scattering scattering, the reflected emission is more likely to overshine that coming directly from the forward shock at higher photon energies, yielding light-curve plateaus and breaks that appear only in the X-ray. The brightness, shape, and decay of the X-ray light-curve plateau depend on the radial distribution of the scatterer’s Lorentz factor and mass-flux. Chromatic X-ray light-curve breaks and sharp post-plateau decays cannot be accommodated by the direct forward-shock emission and argue in favour of the scattering-outflow model proposed here. On the other hand, the X-ray afterglows without plateaus, those with achromatic breaks, and those with very long-lived power-law decays are more naturally accommodated by the standard forward-shock model. Thus the diversity of X-ray light-curves arises from the interplay of the scattered and direct forward-shock emissions.
منابع مشابه
Gamma-Ray Burst afterglows: theory and observations
I discuss some theoretical expectations for the synchrotron emission from a relativistic blast-wave interacting with the ambient medium, as a model for GRB afterglows, and compare them with observations. An afterglow flux evolving as a power-law in time, a bright optical flash during and after the burst, and light-curve breaks owing to a tight ejecta collimation are the major predictions that w...
متن کاملDirect and bulk-scattered forward-shock emissions: sources of X-ray afterglow diversity
I describe the modifications to the standard forward-shock model required to account for the X-ray light-curve features discovered by Swift in the early afterglow emission and propose that a delayed, pair-enriched, and highly relativistic outflow, which bulk-scatters the forward-shock synchrotron emission, yields sometimes a brighter X-ray emission, producing short-lived X-ray flares, X-ray lig...
متن کاملLate internal shock model for the bright X-ray flares in GRB afterglows
We explore two possible models which might give rise to bright X-ray flares in GRB afterglows. One is an external forward-reverse shock model, in which the shock parameters of forward/reverse shocks are taken to be quite different. The other is a so called “late internal shock model”, which requires a refreshed unsteady relativistic outflow generated after the prompt γ−ray emission. In the forw...
متن کاملEvidence for chromatic X-ray light-curve breaks in Swift GRB afterglows and their theoretical implications
The power-law decay of the X-ray emission of GRB afterglows 050319, 050401, 050607, 050713A, 050802 and 050922C exhibits a steepening at about 1–4 hours after the burst which, surprisingly, is not accompanied by a break in the optical emission. If it is assumed that both the optical and X-ray afterglows arise from the same outflow then, in the framework of the standard forward shock model, the ...
متن کاملDecay phases of Swift X-ray afterglows and the forward-shock model.
The X-ray flux of the gamma-ray burst (GRB) afterglows monitored by the Swift satellite from January 2005 to July 2006 displays one to four phases of flux power-law decay. In chronological order, they are: the GRB tail, the 'hump', the standard decay and the post-jet-break decay. More than half of the GRB tails can be identified with the large-angle emission produced during the burst (but arriv...
متن کامل